α2A-Adrenoceptors Strengthen Working Memory Networks by Inhibiting cAMP-HCN Channel Signaling in Prefrontal Cortex

نویسندگان

  • Min Wang
  • Brian P. Ramos
  • Constantinos D. Paspalas
  • Yousheng Shu
  • Arthur Simen
  • Alvaro Duque
  • Susheel Vijayraghavan
  • Avis Brennan
  • Anne Dudley
  • Eric Nou
  • James A. Mazer
  • David A. McCormick
  • Amy F.T. Arnsten
چکیده

Spatial working memory (WM; i.e., "scratchpad" memory) is constantly updated to guide behavior based on representational knowledge of spatial position. It is maintained by spatially tuned, recurrent excitation within networks of prefrontal cortical (PFC) neurons, evident during delay periods in WM tasks. Stimulation of postsynaptic alpha2A adrenoceptors (alpha2A-ARs) is critical for WM. We report that alpha2A-AR stimulation strengthens WM through inhibition of cAMP, closing Hyperpolarization-activated Cyclic Nucleotide-gated (HCN) channels and strengthening the functional connectivity of PFC networks. Ultrastructurally, HCN channels and alpha2A-ARs were colocalized in dendritic spines in PFC. In electrophysiological studies, either alpha2A-AR stimulation, cAMP inhibition or HCN channel blockade enhanced spatially tuned delay-related firing of PFC neurons. Conversely, delay-related network firing collapsed under conditions of excessive cAMP. In behavioral studies, either blockade or knockdown of HCN1 channels in PFC improved WM performance. These data reveal a powerful mechanism for rapidly altering the strength of WM networks in PFC.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Catecholamine and second messenger influences on prefrontal cortical networks of "representational knowledge": a rational bridge between genetics and the symptoms of mental illness.

Both dopamine (DA) and norepinephrine (NE) have powerful, inverted U influences on prefrontal cortical (PFC) cognitive function. Optimal NE levels engage alpha2A-adrenoceptors and increase "signals" via inhibition of cAMP-HCN (cAMP-hyperpolarization-activated cyclic nucleotide-gated cation channel) signaling near preferred inputs, whereas optimal levels of DA D1 receptor stimulation decrease "n...

متن کامل

Norepinephrine Drives Persistent Activity in Prefrontal Cortex via Synergistic α1 and α2 Adrenoceptors

Optimal norepinephrine levels in the prefrontal cortex (PFC) increase delay-related firing and enhance working memory, whereas stress-related or pathologically high levels of norepinephrine are believed to inhibit working memory via α1 adrenoceptors. However, it has been shown that activation of Gq-coupled and phospholipase C-linked receptors can induce persistent firing, a cellular correlate o...

متن کامل

Neuromodulation of Thought: Flexibilities and Vulnerabilities in Prefrontal Cortical Network Synapses

This review describes unique neuromodulatory influences on working memory prefrontal cortical (PFC) circuits that coordinate cognitive strength with arousal state. Working memory arises from recurrent excitation within layer III PFC pyramidal cell NMDA circuits, which are afflicted in aging and schizophrenia. Neuromodulators rapidly and flexibly alter the efficacy of these synaptic connections,...

متن کامل

Chronic stimulation of alpha-2A-adrenoceptors with guanfacine protects rodent prefrontal cortex dendritic spines and cognition from the effects of chronic stress

The prefrontal cortex (PFC) provides top-down regulation of behavior, cognition, and emotion, including spatial working memory. However, these PFC abilities are greatly impaired by exposure to acute or chronic stress. Chronic stress exposure in rats induces atrophy of PFC dendrites and spines that correlates with working memory impairment. As similar PFC grey matter loss appears to occur in men...

متن کامل

Alpha2A-adrenoceptor stimulation improves prefrontal cortical regulation of behavior through inhibition of cAMP signaling in aging animals.

The working-memory functions of the prefrontal cortex (PFC) are improved by stimulation of postsynaptic, alpha2A-adrenoceptors, especially in aged animals with PFC cognitive deficits. Thus, the alpha2A-adrenoceptor agonist, guanfacine, greatly improves working-memory performance in monkeys and rats following systemic administration or intra-PFC infusion. Alpha2A-adrenoceptors are generally coup...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cell

دوره 129  شماره 

صفحات  -

تاریخ انتشار 2007